
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

MODEL MANAGEMENT VIA
DEPENDENCIES BETWEEN VARIABLES:

AN INDEXICAL REASONING IN
MATHEMATICAL MODELING

by

Devrim Rehber

March, 1997

Principal Advisor:
Associate Advisor:

Hemant K. Bhargava
Gordon H. Bradley

Approved for public release; distribution is unlimited.

19970905 138

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of Information Is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington Headquarters Services. Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Protect (0704-0188) Washington DC 20503.

AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
March 1997

REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
MODEL MANAGEMENT VIA DEPENDENCIES BETWEEN VARIABLES:

AN INDEXICAL REASONING IN MATHEMATICAL MODELING
6. AUTHOR(S) Rehber, Devrim

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

FUNDING NUMBERS

PERFORMING
ORGANIZATION
REPORT NUMBER

10. SPONSORING
/MONITORING
ORGANIZATION
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do
not reflect the official policy or position of the Department of Defense or the U.S.
Government.

12b. DISTRIBUTION CODE 12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release;, distribution is unlimited.

13. ABSTRACT (maximum 200 words)
The design and implementation of computer-based modeling systems and environments are gaining interest and

importance in decision sciences and information systems. In spite of the increasing popularity of GUI-based operating
systems, most of the algebraic modeling languages, today, are still file-oriented, text-based, and therefore require
structured declarations and formal model definitions. The utilization of the standard graphical screen objects of a
graphics-based operating system provides enhanced visualization of models and more cohesive human-computer
interaction.

The approach taken in this thesis is to explore the design and implementation of a graph-based modeling system
focusing on computational dependencies between model components. Another important aspect of this research is the
development of a user-friendly model formulation interface for algebraic modeling languages and systems; these facilitate
the description and implementation of mathematical models by allowing the modeler to employ commonly known and
powerful algebraic notation instead of language specific codes.

The major conclusion of this thesis is that dependencies between variables are a foundation for building and
using models and modeling languages. It also shows that this supports model documentation, validation, formulation,
implementation, comprehension, maintenance and reuse. That is, it impacts nearly every step of the modeling life cycle.

14. SUBJECT TERMS Model Management, Decision Support Systems, Dependency
Diagrams, Modeling Languages, Mathematical Modeling, Graph-based Modeling,
Decision Science.

15. NUMBER
OF PAGES 70

16. PRICE CODE
17. SECURITY CLASSIFI-

CATION OF REPORT
Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE

Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited.

MODEL MANAGEMENT VIA DEPENDENCIES BETWEEN VARIABLES:
AN INDEXICAL REASONING IN MATHEMATICAL MODELING

Devrim Rehber
Lieutenant Junior Grade, Turkish Navy

B.S., Turkish Naval Academy, 1990

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE
IN

INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
March 1997

Author: %

Devrim Rehber

Approved by: l4jUM^v^v—
Hemant K. Bhargava, Principal Advisor

./(jordon HJ&adley, Associate^dvisor

ReubafirT. Harris, Chairman
Department of Systems Management

ÖK

in

IV

ABSTRACT

The design and implementation of computer-based modeling systems and

environments are gaining interest and importance in decision sciences and information

systems. In spite of the increasing popularity of GUI-based operating systems, most of the

algebraic modeling languages, today, are still file-oriented, text-based, and therefore

require structured declarations and formal model definitions. The utilization of the

standard graphical screen objects of a graphics-based operating system provides enhanced

visualization of models and more cohesive human-computer interaction.

The approach taken in this thesis is to explore the design and implementation of a

graph-based modeling system focusing on computational dependencies between model

components. Another important aspect of this research is the development of a user-

friendly model formulation interface for algebraic modeling languages and systems; these

facilitate the description and implementation of mathematical models by allowing the

modeler to employ commonly known and powerful algebraic notation instead of language

specific codes.

The major conclusion of this thesis is that dependencies between variables are a

foundation for building and using models and modeling languages. It also shows that this

supports model documentation, validation, formulation, implementation, comprehension,

maintenance and reuse. That is, it impacts nearly every step of the modeling life cycle.

VI

TABLE OF CONTENTS

I. INTRODUCTION : 1

A. OBJECTIVES 1

B. BACKGROUND 1

1. Model Abstraction 1

2. Decision Support Systems 2

3. Data 4

4. Graphics 4

5. Structured Modeling 4

6. Modeling Languages 5

7. Summary 6

C. RESEARCH QUESTIONS 6

D. METHODOLOGY 7

E. CHAPTER OUTLINE 7

H. CONCEPTUAL FRAMEWORK 9

A. OVERVIEW 9

1. Model Variables and Dependencies 9

a. Dependency Diagrams 10

b. Dependency Types 11

c. User Interface 12

d. Model Manager 12

vu

2. Dependencies in Modeling and the Modeling Life Cycle 13

a. Dependency Diagram: EOQ Example 13

b. Dependencies in the EOQ Model 14

c. Generation of Model Expressions (Functional Form) 15

d. Dependency Diagrams: Transportation Model 16

e. Dependencies in the Transportation Model 17

f. Generation of Model Expressions (Functional Form) 17

g. Generation of Equational Forms Using Indexical Rules 18

3. Dependencies in Other Domains 19

B. SUMMARY 20

IE. REASONING WITH DEPENDENCIES 21

A. OVERVIEW 21

B.FRAMEWORK 21

1. Objects, Terminology, and Notation 21

a. Example 1 (Assignment Constraint) 22

b. Example 2 (Subtour Ehmination Constraint) 22

2. Indexical Reasoning 23

3. Dimensional Balance 24

a. Laws of Dimensional Consistency 25

b. Laws of Dimensional Arithmetic 26

4. Model Type 26

vni

IV. IMPLEMENTATION 29

A. APPLICATION DEVELOPMENT TOOL - BORLAND'S DELPHI™ 29

B. APPLICATION IMPLEMENTATION 29

1. Functional Description of the Program 29

2. Program Interface 29

C. MAINTENANCE 42

V CONCLUSIONS 43

A SUMMARY 43

B. CONTRIBUTIONS 44

C. AREAS OF FURTHER RESEARCH 45

LIST OF REFERENCES 47

INITIAL DISTRIBUTION LIST 51

IX

LIST OF FIGURES

Figure 1. Levels of Abstraction 2

Figure 2. DSS Components 3

Figure 3. Elements of a Dependency Diagram 10

Figure 4. Dependencies 10

Figure 5. Dependency Diagram for the EOQ Model 14

Figure 6. About Screen of Model Manager 30

Figure 7. Welcome Page 31

Figure 8. Model Information Screen 31

Figure 9. Dependencies Page 32

Figure 10. Input Box for Set Properties 33

Figure 11. Input Box for Variable Properties 33

Figure 12. Input Box for Dependency Declaration 34

Figure 13. Right-Click on a Component 35

Figure 14. Properties Message Box 35

Figure 15. Delete Confirmation Message 36

Figure 16. Right-Click on an Empty Area 36

Figure 17. Message Box for Listing the Sets 37

Figure 18. Message Box for Listing the Variables 37

Figure 19. Message Box for Listing the Dependencies 38

Figure 20. Functions Page 39

Figure 21. Equations Page 40

Figure 22. Exporter Page 41

Figure 23. Exit Confirmation Dialog Box 42

XI

XU

LIST OF TABLES

Table I. Objects and Notations 23

xin

XIV

ACKNOWLEDGMENT

The author wants to thank Prof. Hemant K. Bhargava and Prof. Gordon H.

Bradley for their guidance and patience during the work in performing this research.

The author also would like to acknowledge the support of his friends Clay

Tettelbach and Mehmet Bediz.

xv

XVI

I. INTRODUCTION

A. OBJECTIVES

The main objective of this research is to investigate the design and implementation

of computer-based modeling systems and environments focusing on computational

dependencies between model components. Another important aspect of this research is the

development of a user-friendly model formulation interface for algebraic modeling

languages and systems; these facilitate the description and implementation of mathematical

models by allowing the modeler to employ commonly known and powerful algebraic

notation instead of language specific codes. In spite of the increasing popularity of GUI-

based operating systems, most of the algebraic modeling languages, today, are still file-

oriented, text-based, and therefore require structured declarations and formal model

definitions. The utilization of the standard graphical screen objects of a graphics-based

operating system provides better visualization of models and stronger human-computer

interaction.

B. BACKGROUND

1. Model Abstraction

A Model is a preliminary work or construction or schematic description of a

system, theory, or phenomenon that accounts for its known or inferred properties and may

be used for further study of its characteristics [Ref. 1]. It is often a simplified

representation or description of a system or complex entity. In Figure 1, Taha [Ref. 2]

presents the levels of abstraction of a real-life situation that lead to the construction of a

model. Although a real situation may involve a substantial number of variables and

constraints, usually only a fraction of these variables and constraints truly dominates the

behavior of the real system Thus the simplification of the real system for the purpose of

constructing a model should concentrate primarily on identifying the dominant variables

and constraints as well as other data pertinent to decisions making.

Figure 1. Levels of Abstraction

The assumed real-world system is abstracted from the real situation by concentrating on

identifying the dominant factors (variables, constraints, and parameters) that control the

behavior of the real system. The model, being an abstraction of the assumed real-world

system, then identifies the pertinent relationships of the system in the form of an objective

and a set of constraints.

Modeling is an indispensable activity in most organizations, whether mathematical

in nature as in management science or operations research applications, or computer-

oriented, as in the development of information systems [Ref. 3]. Model management is an

interdisciplinary pursuit which combines elements of operations research (OR), artificial

intelligence (AI), database management, management science (MS), cognitive science, and

decision support (among others), each of which is an accepted discipline in its own right

[Ref. 4].

2. Decision Support Systems

Decision Support Systems (DSS) are interactive computer based systems, which

help decision makers utilize data and models to solve unstructured problems [Ref 5]. A

critical component of a decision support system is the model management system,

Figure 2, [Ref. 6]. Model management systems aim to facilitate the use of formal

mathematical models for decision making [Ref. 7].

f Data \

Other Systems

Database
Management

System

User Interface
Management

System

f
User

Model
Management

System
-fModelsj

Figure 2. DSS Components

A model management system is effective when the user is able to build a model for several

decision making situations, understand the model representation, retrieve information

regarding the model and the decision making situation, and use the model for problem

solving [Ref. 8]. Gagliardi and Spera [Ref. 9] claim that a first step toward the

construction of a good Model Management System (MMS) is the fulfillment of some

desirable features such as:

• generality, in order to encompass most of the modeling paradigm;

• independence between model representation and the appropriate solver

necessary to obtain its solution;

• independence between model representation and its data;

• management of the model's life-cycle;

• high-level (intelligent) user interface.

3. Data

Models of any kind, regardless of sophistication and accuracy, may prove of little

practical value if they are not supported by reliable data. In some situations, data may not

be known with certainty. Rather, they are estimated by probability distributions. In such

situations, it may be necessary to change the structure of the model to accommodate the

probabilistic nature of the demand. This gives rise to the so-called probabilistic or

stochastic models as opposed to deterministic models. The gathering of data may actually

be the most difficult part of completing a model.

4. Graphics

According to Saaty, mathematical modeling consist of identification of variables

and the dependencies among them [Ref. 10]. Dependency diagrams are useful tools to

represent value dependencies between variables of the model [Ref. 11]. The advantages of

using a graphical model management system over a textual system include greater

flexibility and ease of use [Ref. 12].

5. Structured Modeling

Structured Modeling [Ref. 13 and 14] was developed as a comprehensive response

to the perceived shortcomings of modeling systems available in the 1980s. It is a

systematic way of thinking about models and their implementations that is based on the

idea that every model can be viewed as a collection of distinct elements, each of which has

a definition that is either primitive or based on the definition of other elements in the

model. Elements are categorized into five types (so-called primitive entity, compound

entity, attribute, function, and test), grouped by similarity into any number of classes

called genera, and organized hierarchically as a rooted tree of modules so as to reflect the

model's high-level structure. It is natural to diagram the definitional dependencies among

elements as arcs in a directed acyclic graph. Moreover, this dependency graph can be

computationally active because every function and test element has an associated

mathematical expression for computing its value. The spirit of the research presented here

is closest to that of Geoffrion's work on structured modeling, particularly to the genus

graphs used in structured models.

6. Modeling Languages

Modeling languages are tools for implementing large-scale iterative schemes and

provide a means for connecting user's functions, solvers and interfaces. If people could

deal with mathematical programs in the same way that algorithms do, the formulation and

generation phases of modeling might be relatively straightforward. In reality, however,

there are many differences between the form in which human modelers understand a

problem and the form in which algorithms solve it. Conversion from the "modeler's form"

to the "algorithm's form" is consequently a time-consuming, costly, and often error-prone

procedure [Ref. 15].

Modeling languages are designed to express the modeler's form in a way that can

serve as direct input to a computer system. Then the translation to the algorithm's form

can be performed entirely by computer, without the intermediate stage of human

translation. Modeling languages can help to make mathematical programming more

economical and reliable; they are particularly advantageous for development of new

models and for documentation of models that are subject to change. An algebraic

modeling language is a popular variety based on the use of traditional mathematical

notation to describe objective and constraint functions. An algebraic language provides
n

computer-readable equivalents of notations such as x, + yj,, 2^ ay*Xj, x}- > 0, and jeS that

would be familiar to anyone who has studied algebra or calculus. Familiarity is one of the

major advantages of algebraic modeling languages; another is their applicability to a

particularly wide variety of linear, nonlinear and integer programming models. The

availability of an algebraic modeling language makes it possible to emphasize the kinds of

general models that can be used to describe large-scale optimization problems. While

successful algorithms for mathematical programming first came into use in the 1950's, the

development and distribution of algebraic modeling languages only began in the 1970's.

Since then, advances in computing and computer science have enabled such languages to

become steadily more efficient and general [Ref. 16]. Mathematical programming provides

a way of describing a problem and a variety of methods for solving it [Ref. 17]. However,

today's modeling languages still lack many usability features of a GUI environment and

require very strict syntax rules, which make them hard to learn and use.

7. Summary

This research focuses on a fairly simple, though perhaps not widely used, element

in the practice of modeling: computational dependencies between model components

(chiefly between model variables). It proposes that dependencies between variables be a

foundation for building and using models and modeling languages. It aims to show that

explicit dependency specification can support model documentation, validation,

formulation, implementation, comprehension, maintenance, and reuse. That is, it would

impact nearly every step of the modeling life cycle. Finally, the research describes a GUI-

based prototype modeling system that is based on these ideas and can be used in

conjunction with most modeling languages in use today.

C. RESEARCH QUESTIONS

With the maturity in modeling languages and solvers for mathematical models, it

becomes possible to examine certain other questions in the practice of modeling:

• How can the computational dependencies between model components (mainly

model variables) be used in modeling?

• Can the dependencies between variables be a foundation for building and using

models and modeling languages?

• How should these models, and their assumptions, be documented and reasoned

with?

• How can model structure be comprehended, preferably at a glance, without

having to examine the detailed mathematical formulation (graph-based

modeling)?

• Is it possible to improve usability features and ease-of-use by adding an

intermediate interface between the user and the modeling languages of today?

• What other methods can be incorporated into, or used in conjunction with,

existing modeling languages to make them even more powerful and useful?

D. METHODOLOGY

The initial research approach for this thesis was a combination of literature review

of current books and periodicals, and site surveys of existing WWW sites and USENET

newsgroups to obtain information for both requirements guidance and the DELPHI

programming language.

Once the preliminary requirements were analyzed, a prototype system was

developed by using Delphi™ programming language, which is a visual, object-oriented,

component-based Rapid Application Development (RAD) and database development tool

for Microsoft Windows®. In order to get feedback from end users and get them involved

with the actual system design, several usability tests were performed during system

development. The feedback of the end users was analyzed to refine the GUI design of the

prototype.

E. CHAPTER OUTLINE

Chapter II presents how the author envisions the modeling process. After

introducing some basic definitions and notations, it discusses how to formalize this process

and then make it a part of the modeling system. It also bolsters these ideas with several

examples in order to clarify certain concepts.

Chapter III describes the laws of indexing and the rules for using indexical

structures. At the outset of the mathematical modeling development effort, these specific

laws and rules would facilitate the refinement/validation of the new model (especially,

during the generation of equations by using the functional forms). This chapter presents

various kinds of checks, which could be performed by the system to ensure that the set of

dependencies is consistent with the set of equations, in order to make more precise

equations.

Chapter IV discusses the system implementation phase of the application

development. The chapter addresses issues associated with designing an appropriate user

interface and selecting appropriate application development tools.

Chapter V provides a summary of the thesis and contributions of this research. It

also describes some of the further research opportunities in the topic area.

II. CONCEPTUAL FRAMEWORK

This chapter presents how the author envisions the modeling process. After

introducing some basic definitions and notations, it discusses how to formalize this process

and then make it a part of the modeling system. It also bolsters these ideas with several

examples in order to clarify certain concepts.

A. OVERVIEW

With the maturity in modeling languages and solvers for mathematical models, it

becomes possible~and worthwhile~to examine the design and implementation of

computer-based modeling systems and environments in the decision sciences and

information systems. This paper focuses on computational dependencies between model

variables. It proposes that model formulation can be supported by defining the variables

and their dependencies between them. Once these model components are defined, then

their utilization is pretty straightforward in conjunction with the widely used modeling

languages of today.

1. Model Variables and Dependencies

Mathematical modeling/formulation often begins with the identification of relevant

variables and relationships among them [Ref. 10]. Dependency graphs are often used to

display dependencies. In terms of the modeling/decision life cycle, the step of problem

structuring occurs before model formulation; dependency graphs are a useful tool for

problem structuring [Ref. 11]. In the model management and modeling languages

literature though, there are only a few papers that attempt to make use of these ideas.

Dependencies are an important component of Geoffrion's structured modeling framework;

genus graphs are explicitly used in the development of structured models [Ref. 14].

a. Dependency Diagrams

A computational dependency from variable X to variable Y represents the

problem assumption (or model requirement) that the value of Y changes as a function of

the change in the value of X. Nodes and directed arcs are the major elements of a

dependency diagram. Nodes represent sets, variables, or indexed variables. Directed arcs

represent dependencies between variables and the direction of dependency. Value of one

variable (Y) changes as value of the other (X) changes. Figure 3 introduces the basic

elements of a dependency diagram (Read as "Y depends on X").

Figure 3. Elements of a Dependency Diagram

For example, since revenue depends on sales price and sales quantity, we get the

dependency diagram that is shown in Figure 4.

Figure 4. Dependencies

10

It should be evident that the set of computational dependencies for a

problem is model-specific; different model formulations for a problem may have different

dependencies. Two separate formulations may also have the same dependencies.

An important semantic consideration in developing dependency diagrams is

to separate the dependencies that arise due to relationships between components in the

model from those that arise due to the modeling task (e.g., optimization) applied to the

model.

b. Dependency Types

Directed arcs can be extended to indicate the behavior (e.g.,

increasing/decreasing, direct/inverse, linear/nonlinear, logarithmic/exponential, etc.) and

type (e.g., structural, definitional, or computational) of the dependency.

Structural and Definitional dependencies exist in a model definition,

regardless of what task (e.g., optimization of some function, or simulation, etc.) is to be

performed on that model. These are dependencies that are assumed in the problem

definition. Computational dependencies are those that arise due to the execution of the

computational task associated with the model.

Structural dependency between X and Y. When the data structure of Y is

dependent on the value of X. E.g., X is a set of cities, and Y is , say, d(j, k) - the distance

between cities j and k.

Definitional dependency between X and Y: When the value of Y is, by

definition of X and Y, a function of the value of X. E.g., if Y is Total Cost, and X is

Acquisition Cost. Or, the value of an outcome variable is a function of the values of

decision variables and other input variables and uncontrollable variables.

Computational dependency between X and Y: When the value of Y is

computed as the result of executing a model, with a given task, where X is one of the

inputs of the model and Y is an output. E.g., the optimal value of some decision variable is

a function of the various input values.

11

c. User Interface

Extensive research has been done in the area of model management

systems [Ref. 18]. While most of the research has been directed towards model

representation [Ref. 19], little effort has been directed towards the user interface of a

model management system [Ref. 20]. Portability concerns also have implications for the

user interface [Ref. 17]. The user interface is critical to the success of a model

management system. Although highly sophisticated OR and statistical models exist today,

the effective use of these models depends significantly on a good user interface [Ref. 14].

d. Model Manager

The objective of the prototype program, Model Manager, is to facilitate

the creation, comprehension, and maintenance of mathematical models via the explicit

representation of computational dependencies between variables in the model. The user of

this program declares sets, variables, and test elements and then states the dependencies

between them using nodes and directed arcs in a GUI screen. Then the user declares the

type and the behavior of the dependency. Using these inputs, the system generates the

model expressions in functional forms. The user works with these equations and completes

them, if necessary. Any necessary changes are made first at the dependencies level.

Various kinds of checks are performed by the system to ensure that the set of

dependencies is consistent with the set of equations. By using the modeling rules

(indexical equivalence, dimensional equivalence, and model structure --e.g., linear

programming--), the program refines/validates functional forms in order to make more

precise equations. Then the user completes/changes suggested equations. The program

then checks for syntax/logic errors in order to verify the validity of the equations again.

Errors in areas such as parentheses and punctuation can virtually be eliminated. By

encoding the general template required by the modeling system, much of the code

surrounding the actual equations should be automatically generated. Finally the program

generates actual code and saves the model in the file format of the modeling language of

choice or HTML document.

12

2. Dependencies in Modeling and the Modeling Life Cycle

Dependency diagrams that capture computational dependencies are used as a basic

problem structuring tool. The idea is that an unstructured problem description can first be

given some formal structure by conceptualizing and explicitly representing the

dependencies between the variables of interest. In general, these dependencies are model

specific and therefore influence the form of any specific mathematical model that is

constructed. That is, any detailed mathematical formulation ought to be consistent with

the dependencies laid out in the dependency graph. In the practice of modeling, however,

dependency graphs are rarely used and no modeling language provides features for explicit

representation and use of dependency graphs.

We believe that dependency graphs can play a useful role in model management.

They serve not only the model formulation phase by representing the qualitative problem

in a more structured way, but also serve as model documentation once the model is

specified mathematically. They also enhance model comprehension, which should facilitate

model maintenance and model reuse. Automatic validation can be performed. The

documentation is active; that ensures it will be used. Further, it does not just act as a

guard; it actually can help in the development of the model specification. That is, the

"code" that represents the model code can be partially generated based on the dependency

graph.

a. Dependency Diagram: EOQ Example

Consider the well-known lot size inventory management model. The input

variables are D, h, c, and A; output variables are q, n, and TC. Mathematically, the

relevant equations in the model are:

AD h.Q
TC = -—+-zL+c.D

Q 2

2. AD
Opt{Q) = Q^^-ir

13

n =
Q

and Opt(n) =
D

Opt(Q)

TC: Total cost

A: Setup cost per order

D: Demand

Q: Order quantity

n: Number of orders

h: Holding cost

c: Unit cost

Q*: Optimal order quantity

b. Dependencies in the EOQ Model

The dependencies between model components are shown in Figure 5.

Figure 5. Dependency Diagram for the EOQ Model

14

Or textually;

TC depends on c Q* depends on h

TC depends on h Q* depends on A

TC depends on A Q* depends on D

TC depends on D n depends on D

TC depends on Q n depends on Q*

n depends on Q

It is easy to extend this representation. For example, suppose one wanted to add a new

output variable S (total setup cost);

S = n.A

then, the following two dependencies must be added:

S depends on A

S depends on n

Consider, for the moment, that only the various dependencies have been defined in

developing the model so far; i.e., the exact equations have not been developed. Let us

examine how a modeling system centered around the idea of a dependency graph can

assist in the development and management of a model for this problem.

c. Generation of Model Expressions (Functional Form)

First, we argue that from the dependencies given above, we —or a

computer program- should be able to generate the following equations:

15

S=fi(n,A)

n =f2 (D, Q)

TC=f3(A,D,Q,h,c)

Q=f4(A,D,h)

where fi ,f2 ,f3 and/4 are some mathematical functions.

Of course, the formulation is incomplete, yet it provides certain function forms that any

complete model should be consistent with. If we were to combine dimensional

information, we can make the equations more precise; alternately we could use that

information to validate the functional form developed by the user. The dependency

diagram could be used to convey the model structure and assumptions at a glance.

Therefore, even for this simple problem, dependencies could be useful in model

formulation, validation, comprehension, and reuse.

d. Dependency Diagrams: Transportation Model

Now consider a more interesting example, one that makes use of index

sets. Now we examine another well-known model, Transportation Model. The following

variables are defined in this model, the last two being test variables that represent the

constraints in the model.

Cap (i): Supply capacity at source i

Dem (j) : Demand at destination./

Out (i): Total actual flow out of source i

In (j) : Total actual flow into destination j

Flow (i, j) : Actual flow from i toy

Cost (i, j) : Cost of unit flow from source i to destination 7"

TC: Total cost for all flows

Test elements that represent the constraints in the model:

Ti (i): Capacity test for source i

T2 (j): Demand fulfillment test for destination j

16

e. Dependencies in the Transportation Model

By examining the standard problem definition, we are able to specify the

following dependencies between the variables. Textually:

TC depends on Cost (i, j)

TC depends on Flow (i, j)

In (j) depends on Flow (i, j)

Out (i) depends on Flow (i, j)

Tj (i) depends on Cap (i)

Ti (i) depends on Out (i)

T2 (j) depends on Dem (j)

T2 (i) depends on In (j)

f. Generation of Model Expressions (Functional Form)

From this we should be able to derive the following equations:

TC =fj (Cost (i, j), Flow (i, j))

In(j)=f2(Flow(i,j))

Out (i)=f3 (Flow (i,j))

Ti (i) - gi (Cap (i), Out (i))

T2(i)=g2(Dem(j),In(j))

where, once again, fi, f2, and /j are some mathematical functions, and gi and g2 are

conditional expressions with the same truth value as Ti and T2. Again, these dependencies

could be useful in model formulation, validation, comprehension, and reuse.

17

g. Generation ofEquational Forms Using Indexical Rules

However, more can be achieved by exploiting the indexical information

contained in the model. This information is combined with a model formulation rule that

requires model expressions to be indexically homogeneous. That is, all terms in an

expression must have the same indexical (where the indexical is defined as the unbound

index variables in the expression). Assuming for now that the only indexical operation is

the summation (£) operator, it is easy to see that the equations above can be further

specified as shown below:

TC = X X f(Cost(i, j), Flow(i, j))
i j

or

/ A

' J J

(Eq.2.1)

(Eq. 2.2)

In{j) = ^Flow{i,j) (Eq. 2.3)

Out(i) = 2l/Flow(i,j) (Eq. 2.4)

Ti(i) = Cap(i) OP Out(i)

T2(i) = Dem(j) OP In(j)

(Eq. 2.5)

(Eq. 2.6)

where OP is some comparison operator.

18

It may be noticed that Eq. 2.3 and Eq. 2.4 are completely specified in this manner.

By considering additional information -such as the type model being developed (a linear

program)- the equational forms can be further constrained and made more complete. The

goal, though, is not to automate the development of the mathematical formulation on the

basis of the dependency diagram. In general, there may still be far too many possible

formulations. The point is that these formulations must all satisfy a variety of constraints

that derive from the dependency diagram.

3. Dependencies in Other Domains

Diagrams are used to facilitate problem solving in mathematics, physics, chemistry,

engineering, economics, business, and other scientific areas. Research indicates that users

understand and use diagrams easily and more efficiently than textual comprehension.

Graphical representations help users structure the problem better [Ref. 21]. Diagrammatic

representations meet the criteria of descriptive and procedural adequacy for many types of

problems and diagrams have traditionally been used in certain types of problem solving

[Ref. 22]. Larkin and Simon [Ref. 23] show that diagrams can be searched more efficiently

and need less storage for representation. Advances in the scientific world without the use

of diagrams would be difficult [Ref. 22].

Computer science, for example, makes use of diagrammatic approach in many

areas extensively. Entities and their dependencies are often presented with diagrammatic

representations in various contexts. Entity relationship (ER) diagrams and semantic object

models (SOM) in database design, state diagrams in automata theory, neural networks in

artificial intelligence (AI), object model, dynamic model, and functional model

representations in object modeling technique (OMT), network diagrams in computer

networks, data flow diagrams (DFD) and structure charts in structured systems design,

and traceability model diagrams in requirements engineering are some of the most

common ones. Most of the code generators utilize graphical representations. Dependency

graphs are also used as intermediate representations in optimizing compilers and software

engineering. Drawings of compiler data structures such as syntax trees, control flow

19

graphs, dependency graphs, are used for demonstration, debugging and documentation of

compilers.

B. SUMMARY

Dependencies between model variables, as represented in dependency diagrams,

are a tool for problem structuring and are a foundation for development of a formal

mathematical model. They are often used, informally, by model builders in the early stages

of model formulation. They are sometimes taught in courses on modeling, occasionally

employed in modeling textbooks, and almost nonexistent in a formal sense in modeling

languages. If incorporated into modeling languages and systems, they could be useful in

model formulation, validation, maintenance, and reuse.

However, experience with similar situations in other domains (such as software

development) indicates that model builders will usually not record the dependencies until

they are forced to, or unless recording those dependencies provides a more tangible

reduction in the model specification effort. It is, of course, additional work to document

these dependencies [Ref. 24].

From the functional/equational form developed above, it is easy to write general

purpose programs that will generate actual code in the modeling language of choice.

Further, by encoding the general template required by the modeling system, much of the

code surrounding the actual equations could be automatically generated. Errors in areas

such as parenthesis and punctuation can virtually be eliminated. Thus, material support can

be given to the model builder who would not have to develop the entire model from

scratch by hand. We believe, this would be instrumental in encouraging modelers to

conceive of models in terms of dependencies, document this conceptualization formally

and explicitly, and use it subsequently in model formulation and maintenance.

20

III. REASONING WITH DEPENDENCIES

This chapter describes the laws of indexing and the rules for using indexical

structures. At the outset of the mathematical modeling development effort, these specific

laws and rules facilitate the effort to refine/validate the new model (especially, during the

generation of equations by using the functional forms). Based on the ideas of Bhargava

[Ref. 25], this chapter presents various kinds of checks, which are performed by the

system to ensure that the set of dependencies is consistent with the set of equations.

A. OVERVIEW

Index sets, indexing of variables over these sets, and expressions containing

indexing structures, are the most important elements of mathematical modeling. The laws

of indexing and rules for using indexical structures are usually straightforward and rarely

explicitly stated. However, with the advent of modeling languages that allow indexed

expressions, it is important to state the semantics of indexing operations and expressions

in a clear, implementation-independent manner.

Indexical reasoning in modeling languages can be used for;

• Validating expressions involving indexed variables, indexing structures, and

indexical operators,

• Constraining the formulation of expressions in a way that it satisfies indexing

laws,

• Deducing expressions that satisfy all laws.

B. FRAMEWORK

1. Objects, Terminology, and Notation

The following examples illustrate the framework, concepts and objects relevant to

indexical reasoning and how these are related.

21

a. Example 1 (Assignment Constraint)

assign(i e /): ^ x,, = 1

This constraint states that each individual (in the set I) must be assigned

exactly one job (from set J). There are two index sets (I and J), and one indexed variable

(xij) with index symbols (or indices) i and j being used to range over sets I and J

respectively. The test element assign (i e I), indexed over set I, returns a value "true"

when the mathematical condition is satisfied. The symbol S represents the indexical

operator for summation, and j e J is an indexing structure.

An important reason to distinguish between the index set itself and the

index symbols used in writing expressions that range over the set, is that an indexed

variable may be indexed over a set more than once. For example, consider the subtour

elimination constraint in a traveling salesman problem.

b. Example 2 (Sübtour Elimination Constraint)

subtour(j € J,k e J):uj — m + n-yj,k <n — 1

Here, the indexed variable yjik represents travel between nodes j and k,

where both j and k range over the same set of nodes J. The variable n represents the

number of nodes; uj and Uk are dummy variables, with the index symbols j and k again

ranging over the same set J.

In general, the objects relevant to indexical reasoning in mathematical

modeling are: index sets, index symbols, variables (including indexed variables) and test

elements (including indexed test elements), and indexical operators. We will also define a

function —the indexical—over the indexed expressions in the model. For now, we use our

example to explain what this means: the indexical of xj is {i, j}; the indexical of ^xij is
j

{i}; the indexical of assign(/ e I) is {i); and the indexical of n is 0.

22

Since our discussion of these objects is largely at the meta-level, we need

certain additional notation to the sorts (or sets) of these objects and members of these

meta-level sets. In Table I, let V denote the set of index sets and y denote any member of

T; Q denotes the set of index symbols, and co its members; 0 denotes the set of variables

and 0its members; Y denotes the set of test elements and f a member of W. Let A denote

the set of indexed expressions and A a particular expression. Let 0 denote the set of

indexical operators, and 6 its members. Finally, let A denote the power set of index

symbols, and <5its elements (i.e., subsets of Q).

OBJECT

TYPE

NOTATION

FOR

SORT MEMBER

Set V Y

Index Symbol Q CO

Variable $ 4>
Test Element T *

Indexed Expression A X

Indexed Operator 0 e
Power set of Q A ö

Table I. Objects and Notations

2. Indexical Reasoning

We now define the indexical function i : A h-»A. That is, for each indexical

expression X, its indexical -the set of index symbols that are free in that expression-is a

subset ö of index symbols. The semantics of this function are defined in two parts: first,

for the primitive expressions (variable and test elements) and second for the compound

expressions involving these objects.

23

The indexical of a variable is simply the set of index symbols used in defining it.

The indexical of a test element is, similarly, the set of index symbols used in defining it.

The indexical of compound expressions is defined in the following rules:

*(Ai + A2) = *(Ai) iff *(A0=*(A2) (Eq.3.1)

1 (Ai - A2) = 1 (Ai) iff 1 (Xi) = 1 (A2) (Eq. 3.2)

* (Ai * A2) = 1 (AO u 1 (A2) (Eq. 3.3)

1 (Ai / A2) = 1 (AO u 1 (A2) (Eq. 3.4)

* (AiA2) = 1 (AO u 1 (A2) (Eq. 3.5)

*(5>i) = i(Xi)\ö (Eq.3.6)

r(^:A) = 1 (i/r)iff 1 (i/r)= 1 (X) (Eq. 3.7)

3. Dimensional Balance

Dimensional arithmetic, or the calculus of dimensions, involves operations on

dimensions analogous to the arithmetic operations on numbers. Transformations of units

of measurement are required in model solution and model integration. Dimensional

simplification and verification of dimensional consistency of expressions is useful in model

formulation and model validation [Ref. 26].

Bradley and Clemence [Ref. 27] states that one aspect of model development that

has received little automated support is the verification that the algebraic representation of

the model correctly represents the modeler's intention. This intention is expressed in the

form of explanatory descriptions which are associated with each numeric-valued symbol in

the model. These descriptions are a necessary part of any modeling effort because they

assign real world meaning to the model data and computation results. The computer

manipulates numbers -the meaning assigned to the data and the results is the responsibility

of the modeler who is doing a "dimensional" check of each model function and constraint.

This is done by replacing each numeric-valued symbol with its explanatory description and

then applying two kinds of dimensional calculus. One is the calculus of measurements

units: multiplication and division of units and a unit analysis to verify that pure numbers

24

that are added, subtracted or compared have the same scale of reference. The other kind is

concerned with what the symbol represents (e.g., apples, cars) and which of its properties

are being measured (e.g., cost, height, weight/time).

Bhargava [Ref. 26] presents the laws of dimensional consistency and dimensional

arithmetic. The following sub-sections will explain these laws.

a. Laws of Dimensional Consistency

The laws for obtaining dimensionally consistent (d.c.) expressions are

stated below:

• Two functional expressions may be added or subtracted only if they are

dimensionally equivalent (d.e.). (Expressions of the form <p + f, <f) - f are

d.c. iff 4> and f are d.e.)

• Two functional expressions may be compared for equality or inequality

(resulting in a conditional expression) only if their dimensions are equivalent.

(Expressions of the form <f> = ty, <f> < f, <j) > ifr, <f) < f, and 4> > ^are d.c. iff

4> and ifr are d.e.)

• Two functional expressions may be multiplied irrespective of their dimensions.

(Expressions of the form <f> * ^are d.c. if <p and <p are d.c.)

• Any dimensionally valid functional expression can be inverted. (Expressions of

the form 1 / <p are d.c. if <p is d.c.)

• The exponent of a functional expression must be dimensionless. (Expressions

of the form (ff are d.c. only if i]r is dimensionless.)

• The exponent of a functional expression can be fractional only if

* each fundamental unit in the functional expression has a power that is a

multiple of the inverse of that fraction, or

* the functional expression is dimensionless. (Expressions of the form <p^

are d.c. if the fundamental units of (ff have integer powers, i.e., ^"is an

integer, or if 0 is dimensionless, or if each fundamental unit in <p has a

power that is a multiple of 1 / ifr.)

25

• Functions which can be expressed as power series (e.g., trigonometric

functions, hyperbolic functions) can be applied only to dimensionless

expressions.

b. Laws of Dimensional Arithmetic

The laws of dimensional arithmetic are slightly different from that of

standard arithmetic:

• The dimensions of the sum (or difference) of two expressions is the same as

the dimension of either of them if the two expressions have equivalent

dimensions. Otherwise, it is not defined (see laws for dimensional consistency).

• The dimension of the product (quotient) of two expressions is the product

(quotient) of the dimensions of the two expressions. A dimensionless

expression has dimension UQ (= 1) which is an identity for dimensional

multiplication.

• The dimension of the power of an expression is the power of the dimension of

the expression.

• Any function of expression with dimension UQ yields an expression of

dimension UQ.

In their research, Bradley and Clemence [28] presents these principles:

• The product or ratio of valid types is also a valid type;

• For the operations of addition, subtraction, comparison (<, =, >), assignment,

input, and output, both operands must have the same concept, quantity, and

unit;

• When simplifying expressions and considering automatic conversions, concepts

are checked first, then quantities, and finally units.

4. Model Type

The functional/equational forms can be further constrained and made more

complete by considering additional information about the model type. For example, if the

26

type is a linear programming model, then we can conclude that only summation or

difference signs will be used in equational forms. Similarly, if it is a non-linear program,

then we can easily rationalize that product or quotient signs will be used in the model.

27

28

IV. IMPLEMENTATION

This chapter discusses the system implementation phase of the application

development. The chapter addresses issues associated with designing an appropriate user

interface and selecting appropriate application development tools.

A. APPLICATION DEVELOPMENT TOOL - BORLAND'S DELPHI™

The visual development methodology approach uses a visual object-oriented rapid

application development (RAD) tool, in this case Borland's Delphi™, to quickly develop

an application prototype.

B. APPLICATION IMPLEMENTATION

1. Functional Description of the Program

Model Manager is composed of six sub-pages. The program interface is in

a tabular form, labeled with each specific function. The "tabbed notebook" approach helps

the user easily navigate between the pages. Commonly-used words for menu items are

used in a standard order (i.e., File, Edit, View, Run, Help) to improve system usability.

The same idea is used during the construction of all the other windows, pop-up/pull-down

menus, and dialog boxes.

2. Program Interface

The "About" page, depicted in Figure 6, is the beginning page of the

program.

29

1 fhf Model Manager ■ _|C|xl
fite £dl ä£e« fiun üdp .' BW

f :««*. . i". ' VÄiebri» ••■>."-1 6«iÄiÄ»w H'"' .Füwfam"V .] -. - Equator». "j- Eg»** ..1 . .

Figure 6. About Screen of Model Manager

When the user selects the "Welcome" tab of the program, the related

welcome screen, Figure 7, appears. It is an introduction page which describes what the

program is. The "Next >" button in this screen brings the "Model Information" message

dialog box as shown in Figure 8. Here, the user defines the model and gives a name to it.

The input fields in this page are optional. The modeler enters these information just for

his/her own records. An alternative to using mouse or tab keys is to use shortcut keys

(i.e., Alt+m and Alt+d). The same action can be done more than one way, which is an

important usability issue for advanced users. This functionality is used very often

throughout the program The "Next >" button in this page submits the information inputs

and opens the "Dependencies" page.

30

-i Model Manaaer
■ffe ;£* JffW» fl«1 ÜW1

H|:- Ö^endeneie» Funetter» ! cquaöcrt» r Escort« I

AKTßH. MANAGEMENT!'VIA DEPENDENCIES BETWEEN VARIABLES

■'■'■=■ This program iwesUgates the design and implementation of computep-based
f modeling systems artf environments by focusing on computational dependencies"
tbefweef^modelco.mpoiyinfe; i'"j . ^ ~, ".^ .-..■•'• . "'' v

l^:?v"r '• /^;::-^^:':^c^--^i^'^"-f::::i-;i-?K^;.^;JNa«*;if#8^n:l' 7 ^'';'!?;";^':/.^" • ^;:-'^-^^:;V*'.':j^::.::.:;'.:^ |

[''■ '■ ^Jevrim Rehber. IT^^^ ,.
p. "■:■■'■'..:* Hemar»tK,Brö^a«^Protessor; ■:. CftincipalAdvisor)
I--- Gordon H. Bradley, RrofessW: (Associate Advisor)

^ext> j \ Ex»

Figure 7. Welcome Page

Model Information

|. MPdeJ Nome: |EOO MODEL

Mode! befirtifion; Wilson's lot size inventory management
model.

Input Variables:
D: Demand
h : Holding Cost
c: Unit Cost
A: Setup Cost per Order
Q : Order Quantity
n : Number of Orders
TC: Total Cost
Q*: Optimal Order Quantity

M«d> I Cancel j

Figure 8. Model Information Screen

31

Model Manager

HS * 1 Wdcams

QUxJ

öj ja a m ÜNTITUED MODEL

| Palette

ü o
VÄbfc ■ '

btpenAenw

i-M Uepwifer»» ■
!' "-Tjpes ' '

h-SÄjctuia'

—Deftra&inal-

•— Cooiputatixul ;

vF!
Ilnput Variable I

Üwt> ; Est

Figure 9. Dependencies Page

Figure 9 shows the dependencies page. This is where the user constructs

his/her model. On the left side of the screen there is a "palette". The user chooses the

model components from this palette and defines them There are three components in the

palette:

D!
Set

o
Variete Dependency

When the user selects any one of the components, an associated input box is

presented. Figure 10,11, and 12 show these input boxes respectively.

32

Set Properties

get Name: [_.;■" J|

^ida«c^Tjbois:'j t] \ %\

wmmmimimmmm „IM m »mi«miiMim.»nJ i

Figure 10. Input Box for Set Properties

Variable Properties

! Vjaria&le Name: 1|

Sjßmbol:

| Variable Iyped

} index Order

1

3\

[j—^:'l—3 I—3:-f—3--I—31

Definition::

OK: I Cancel

Figure 11. Input Box for Variable Properties

33

Dependency Declaration

^j depends oh m
Dependency Iyperj

I Dependency Sehavtar;

3i

~3\

JK_ j| £ancel |

Figure 12. Input Box for Dependency Declaration

The modeler enters the values for each kind of component and then presses

"OK" button in order to submit the information to the database and close the input box.

On the dependencies page (Figure 9), the user chooses an appropriate space and places

the component by left-clicking the mouse. The user can move the component by holding

down the left mouse button and dragging to some other coordinate; or he/she can right-

click the mouse button on that component to see its properties as shown in Figure 13 and

14. If the modeler wants to remove any component from the model, then he can click the

right mouse button and select "Delete". Then a confirmation message dialog box appears

as depicted in Figure 15; this protects the modeler from mistakenly deleting a node.

Another functionality of the right mouse button is clicking it on an empty

area of the dependencies page, which brings a pop-up menu shown in Figure 16. By using

this menu, the user can reach the lists of the previously created components. Figure 17,

18, and 19 show these view-only lists of databases. The other items in that pop-up menu

are Clear, Print, and Help.

34

Model Manaqer BBB

j.. D«p«ndMc*» ..-'t """Fu«***.. vj:~.

üNTlfuEDi«ÖbEiJ

! tXP?**'

L_Ji

Palette

■
D

aBaKouaauBUi

3 •V«sbie'

!:J :-'i

I'D!
WST;

ßafe* i

i ft«t> I rw

Figure 13. Right-Click on a Component

Set Properties

I get Name;! Distance

is^nboi:.;: JDIST" ..;;■.

index Symbols: p |d .]s :!

iar The distance between two points.

j SK '-|:|

Figure 14. Properties Message Box

35

Confirm

4> Afeyousufei>ojwanUodetetethesetDiST?

Figure 15. Delete Confirmation Message

Model Manager
iffe £* »W» #*!**>

DowndinGi«' . I "Swaon*"'.'" ■] " ..Equations!

UNTITLED MODEL

M

toa'p |

Palette

V«abie

-StRjdural ■

i i —Defin&na! ;

■QBH 28-1

£lear

£pnt

ttext? j to

Figure 16. Right-Click on an Empty Area

36

List Sets

Set SyraboH Set Name j Index Sytrtxa-lllndex Symbd-^lfKtexSjtrfx)}-3l^j

m

E3QI-I

Figure 17. Message Box for Listing the Sets

List Variabler

I Variable Typa' j Indaat-t 1 lnd»x-2| ind»>e3| trete^~4l Irutek-Sl^j' VarWAsStfäbeäVaiiabfe

zl\

Figure 18. Message Box for Listing the Variables

37

List Dependencies

Figure 19. Message Box for Listing the Dependencies

The different types of dependencies are represented with different color codes

in the model: red for structural, blue for definitional, and black for computational

dependency. These color codes and hints on almost every icon and model component help

the user see the dependencies easily and visualize the whole model more clearly.

After constructing the model, the user presses the "Next >" button and

launches the "Functions" page. At this stage, the modeler can see his/her model in

computer-generated functional form, Figure 20. He/she examines the functions, works

with them and if necessary completes them Any changes have to be made first at the

dependencies level. The functions page is a simple editor, which includes the basic editing

functions. The modeler can use the icons, the shortcut keys, or right-click of mouse in

order to make necessary changes in this editor. The user can also go back to dependencies

page and make changes there, if necessary. Then he/she has to press the "Next >" button

in that page in order to create the updated version of the functional forms.

38

Model Manaqer

£<fc Jöew Bt*> H8^
! • About._., ..} ;.;.WaletwK>i Dabertdencie* E.quabont Esoafer:

FUNCTIONAL FORMS

Q=f(W,E)
W = f(E,r(Q,W))
t(E,W>Q)=f(r(QIW),E,W)
r(Q,W)=f(E) ____
y = f (r(Q, W), E.KMOsi], u(Q))
u(Q)=f(Q)

"31

rund?

j£a:te

i fiefets

Select Al

ZJ

_3J
Figure 20. Functions Page

Once the modeler believes that the functional forms are what he/she

wanted, then he/she must press the "Next >" button to create the real equations. These

results, which appear in "Equations" page, are generated by using the modeling rules

(indexical equivalence, dimensional balance, and model structure). Then the user should

refine and validate the equations, which are suggested by the program. After the changes

and corrections are made, the program checks the syntax and logic errors in order to

verify the validity of the equations again. Errors in areas such as parenthesis and

punctuation can virtually be eliminated. The equations page is almost the same as the

dependencies page. It is also an editor with the same functionalities. Figure 21 shows the

equations page.

39

IJ: Model Manager ■ _|n|xl
Ffe £« Veo* &<*> Ueip ^^^^^^^^^^^^^^^^^^^^^^^^^^B

■ Abut . '.L.._;W«Jeaas "J Dependencies . j Funcrtor» _ Equations H! Export« J

«13I3I«! EQUATIONAL FORMS

TC = sum(i, sum(j, f(Cost(i, j), Flow(i, j))))
ln(j) = sum(i, now(i, j))
Out(i) = sum(j, Flow(i, j))

^3

zl
iatA-> j

Figure 21. Equations Page

Finally, when the modeler presses the "Next >" button in the equations

page, the program launches the "Exporter" page, where the actual code is generated by

the computer. In the exporter page, Figure 22, there are three options to choose from.

They are:

mf£i

AMPL, GAMS, and HTML. When the modeler selects any one of them then the program

generates the actual code for that language. The user can save as a file format of the

modeling language of choice or HTML document.

40

Model Manager

Abo* 1 * \vasmj

MSB

! Fund«»* Equations i Expottot

rMfi-M-äi EXPORTER

Palette
DCTYPE HTML PUBUC 'V/WX/VDTD HTML 3.2 Draft

<I-Thb HTML file is created by Model Manager«)

<!-UNTITLED M0DEL->

<HTML>
<HEAD>
<TITLE>UNTITLED MODEL</TITLE>
</HEAD>
<B0DY>
CENTERxH1>UNTITLEDM0DEL</H1x/CENTER>

<HR>

$sum_m-0 *itr-n-1A$

$prod m-0 "m=n-r$

<MATH> A<SÜP> &arpha; </SUPx/MATHxBR>
<MATH> B<SUB> ibeta; </SUBX/'MATHxBR>

</B0DY>
</HTML>

gave

"H

«yi

ir^n

Figure 22. Exporter Page

If the modeler selects the HTML button, then he can also browse this code by

running the Netscape Navigator directly from the program He/she should press the

following button in order to that:

The user can exit from the program anytime by clicking the exit button or the

close icon of the title bar:

When the user wants to close the program a message dialog box, shown in Figure 23,

appears to confirm the command.

41

Confirm

"ef\ Do JIQU jedfe» want to esdt Mode) Maiager? a
|Y««1 No'

Figure 23. Exit Confirmation Dialog Box

C. MAINTENANCE

In looking at the Visual Development Methodology (VDM), it becomes clear that

the concept of system development phases becomes very blurred. The difference between

requirements analysis and design, or the difference between implementation and

maintenance, becomes harder to see because the building of the applications pervades

virtually every area of the entire development cycle.

Development begins in the very early stages of investigating the problem to be

solved. Solving the problem identified is not the completion of the development process.

Instead, this process will continue indefinitely. As long as there is a need for the

application, developers should continue working on it. What was maintenance becomes

implementation.

The VDM means a redefining of the meaning of the maintenance phase. The VDM

does not draw a line between maintenance and development. Maintenance becomes a part

of the original development process itself and begins very early in the development effort.

Therefore, the project presented in this thesis should be viewed as being in the

maintenance mode right from the beginning, rather than at the end of the development life

cycle.

Throughout the development process, Delphi allowed the developer to make

changes, often right in the presence of the users, to ensure that the interface design was

satisfactory and met the needs and desires of those who will use the system.

42

V. CONCLUSIONS

A. SUMMARY

In this thesis, it is suggested that diagrammatic representations improve

comprehension and simplify problem structuring. In support of this, the thesis proposes

dependency diagrams as a tool for problem structuring and as a foundation for

development of a formal mathematical model. It proposes that dependencies between

variables can be used for building and using models and modeling languages.

An important aspect of this thesis is the development of a GUI-based model

formulation interface for algebraic modeling languages and systems. These interfaces

facilitate the description and implementation of mathematical models by allowing the

modeler to use universal mathematical symbols and algebraic notation. This approach

enhances the development process by replacing the requirements of language specific

codes with a generalized modeling environment, which provides better visualization of

model components and more interactive model management.

This thesis also shows that dependency graphs can play a useful role in model

management. These dependencies support almost every step of a modeling life cycle. They

serve not only the model formulation phase by representing the qualitative problem in a

more structured way, but also serve as model documentation, which should facilitate

model maintenance and model reuse. Automatic validation can be performed. The

documentation is active; that makes it more likely to be used. Further, it does not just act

as a guard; it actually can help in the development of the model specification. That is, the

"code" that represents the model can partially be generated based on the dependency

graph. So, this graphical representation is an integrated approach towards model

management.

43

B. CONTRIBUTIONS

One of the contributions of this thesis is that it highlights the lack of literature in

providing guidance on computational dependencies between model components and the

semantics of indexing operations and expressions in a clear, implementation-independent

manner. In other domains, there is significant work on this topic which make use of these

dependencies and their relations extensively. Dependency-based reasoning is more

established in software engineering and software design than in mathematical modeling.

Another contribution is the observation that although most current algebraic

modeling languages are run on top of GUI-based operating systems, they are still file-

oriented and text-based. Therefore, these languages require structured declarations and

formal model definitions. They use strict syntax rules, notations, code words and data

entry methods. Rosenthal [Ref. 17: pp. 7-32] explains the importance of the correct

implementation of these rules with many informative bullets in his GAMS tutorial. Since

average users generally cannot remember/control all of these rules, the use of the system

becomes more error-prone. Whereas, in a GUI environment, most of the errors mentioned

here would be eliminated automatically because the utilization of graphical objects forces

the users to enter their inputs in a "standard" way. If the primary purpose and demand of

GUI computing is to make computers easier to use for everyone, then why should this

demand not be applied to the current modeling languages? This thesis has provided some

insight that modelers can improve usability features and ease-of-use by adding an

intermediate interface between the user and the modeling languages of today. This

approach not only enables modelers to present the whole modeling process clearly but also

helps to "see the big picture" in model management.

The most significant contribution this thesis has made is to provide a tool,

dependency diagrams, for problem structuring and as a foundation for the development of

a formal mathematical model. The incorporation of this tool into modeling languages and

systems facilitates model formulation, validation, maintenance and reuse.

44

C. AREAS OF FURTHER RESEARCH

The rapid growth of the Internet in general, the explosive growth of the World

Wide Web in particular, creates new opportunities for the development and deployment of

decision technologies for and by organizations and individuals [REF. 30]. The application

presented in this thesis is well-suited for web-based development that would make it

accessible to a broad range of users. By using Java technology, portability and platform-

independence issues can be resolved. The user interface can also be improved.

If it is implemented in the Java programming language, Model Manager could also

be registered as a provider on DecisionNet [REF. 31, 32, 33, 34, 35, 36, and 37].

DecisionNet is a distributed, Web-based electronic market for decision technologies such

as data, models, solution algorithms, and modeling environments. It acts as a broker

between "providers" (owners of decision support technologies) and "consumers" (users of

decision support technologies). This web-based approach also creates an opportunity for

modelers to build their own models on the WWW. After building the model in Model

Manager, the output file can be sent to the solvers through DecisionNet. DecisionNet

allows a consumer to use a decision technology when he/she wants it. Also the consumer

is free of the problem of owning and managing the software (use vs. own).

If dependencies between model variables, as represented in dependency diagrams,

are incorporated into modeling languages and systems in a GUI environment, they could

be more useful in model formulation and the other phases of the modeling life-cycle.

We hope that further enhancements will be made to this system, increasing its

capability, web-orientation and ease-of-use.

45

46

LIST OF REFERENCES

1. The American Heritage® Dictionary of the English Language, Third Edition,
Houghton Mifflin Company, 1992.

2. Taha, A. H., Operations Research: An Introduction, 5th Edition, MacMillan Publishing
Company, Engelwood Cliffs, New Jersey, 1992.

3. Dolk, D. R., "An Introduction to Model Integration and Integrated Modeling
Environments," Decision Support Systems, 10, pp.249-254, 1993.

4. Dolk, D. R., "Model Management and Structured Modeling: The Role of an
Information Resource Dictionary System," ACM 31, 6, pp.704-718,1988.

5. Sprague, Ralph, "A Framework for the Development of Decision Support Systems,"
MIS Quarterly, 4(2), pp. 1-26, 1980.

6. Sprague, R.H. and Carlson, E. D., Building Effective Decision Support Systems,
Prentice Hall, Englewood Cuffs, New Jersey, 1982.

7. Bhargava, H. K. and Kimbrough S.O., "Model Management: An Embedded Languages
Approach," Decision Support Systems, 10:3, pp. 277-300, 1993.

8. Liang, T.P., "Integrating Model Management with Data Management in Decision
Support Systems," Decision Support Systems, 1, pp. 221-232, 1985.

9. Gagliardi, M. and Spera, C. "MODASS: An Object Oriented Model Management
System," Proceedings of the INFORMS Conference on Information Systems,
Washington, DC, 1995.

10. Saaty, Thomas L. and Alexander, J. M, Thinking With Models: Mathematical Models
in the Physical, Biological, and Social Sciences, Pergamon Press, New York, New
York, 1981.

11. Bhargava, H. K., Lecture Notes for Decision Support Systems, Naval Postgraduate
School, Monterey, California, 1996.

12. Chari, K and Sen, T. K., "An Implementation of a Graph Based Modeling System for
Structured Modeling (GBMS/SM)," Working Paper, James Madison University,
Harrisonburg, Virginia, 1997.

47

13. Geoffrion, A. M., "Structured Modeling: Survey and Future Research Directions,"
ORSA CSTS Newsletter, 15: 1, 1994. (Updated version, May 1996 at Web site:
http://personal.anderson.ucla.edu/~art.geoffrion/home/docs/csts/index.htm.)

14. Geoffrion, A.M., "An Introduction to Structured Modeling," Management Science,
33:5, pp. 547-588,1987. WMSI Reprint 219. Formerly WMSI Working Paper 338,
6/86, (revised 12/86, 2/87, 5/87, 8/87, 3/88).

15. Fourer, Robert, "Modeling Languages versus Matrix Generators for Linear
Programming," ACM Transactions on Mathematical Software, 9, pp. 143-183,1983.

16. Fourer, Robert, Gay, David M., and Kernighan, Brian W., AMPL A Modeling
Language for Mathematical Programming, p.xiii, Boyd & Fräser Publishing
Company, Danvers, Massachusetts, 1993.

17. Brooke, A., Kendrick, D., and Meeraus, A., GAMS, Release 2.25, A User's Guide,
Boyd & Fräser Publishing Company, Danvers, Massachusetts, 1992.

18. Blanning, R.W, Model Management Systems: An Overview, Owen Graduate School
of Management, Vanderbilt University, Nashville, Working Paper No. 89-23,1989.

19. Baldwin, A. A., Baldwin, D., and Sen, T., "The Evolution and Problems of Model
Management Research," Omega, 19(6), pp. 511-528, 1991.

20. Liang, T. P. and Jones, C. V., "Meta-Design Considerations in Developing Model
Management Systems," Decision Sciences, 19(1), pp. 72-92, 1988.

21. Pracht, W. E., "Model Visualization: Graphical Support for DSS Problem Structuring
and Knowledge Organization," Decision Support Systems, 6, pp. 13-27, 1990.

22. Sen, T., "Diagrammatic Knowledge Representation," IEEE Transactions on Systems,
Man and Cybernetics, Vol. 22(4), pp. 826-830, 1992.

23. Larkin, J. H. and Simon, H. A., "Why a Diagram is (Sometimes) Worth Ten Thousand
Words," Cognitive Science, 11, pp. 65-99, 1987.

24. Bhargava, H. K., "Model Management via Dependencies Between Variables,"
Working Paper, Department of Systems Management, Naval Postgraduate School,
Monterey, California, 1996.

25. Bhargava, H. K., "Indexical Reasoning in Mathematical Modeling," Working Paper,
Department of Systems Management, Naval Postgraduate School, Monterey,
California, 1996.

48

26. Bhargava, H. K., "Dimensional Analysis in Mathematical Modeling Systems: A Simple
Numerical Method," ORSA Journal on Computing, 5: 1, pp. 33-39,1993.

27. Bradley, G. H. and Clemence Jr., R. D., "Model Integration with a Typed Executable
Modeling Language," Proceedings of the 21s' Annual Hawaii International
Conference on System Sciences, Vol. HI, IEEE Computer Society Press, Los
Alamitos, California, pp. 403-410,1988.

28. Bradley, G. H. and Clemence Jr., R. D., "A Type Calculus for Executable Modeling
Languages," IMA Journal of Mathematics in Management, 1, pp. 277-291, 1987.

29. Borland International, Inc., Borland Delphi™ Database Application Developer's
Guide, Scotts Valley, California, 1995.

30. Bhargava, H.K., Krishnan, R., and Muller, R./'Electronic Markets for Decision
Technologies: A Business Cycle Analyis," formcoming in International Journal of
Electronic Commerce, Last revised October 1996.

31. Bhargava, H.K., Krishnan, R, and Muller, R., "Decision Support on Demand: On
Emerging Electronic Markets for Decision Technologies," forthcoming in Decision
Support Systems, Last revised May 1996.

32. Bhargava, H.K., Krishnan, R., Roehrig, S., Kaplan, D., Casey, M. P., and Muller, R.,
"Model Management in Electronic Markets for Decision Technologies: A Software
Agent Approach," Proceedings of the Thirtieth Hawaii International Conference on
System Sciences, (Maui, Hawai'i), January 1997.

33. Bhargava, H.K., Krishnan, R., and Muller, R., "On Parameterized Transaction Models
for Agents in Electronic Markets for Decision Technologies," Proceedings of the
Fifth International Workshop on Information Technologies, Amsterdam, December
1995.

34. Bhargava, H.K., Krishnan, R., and Muller, R., "On Sharing Decision Technologies
over a Global Network," Proceedings of the International Conference on Automation,
(Indore, India), December 1995.

35. Bhargava, H.K., Krishnan, R., and Kaplan, D., "On Generalized Access to a WWW-
based Network of Decision Support Services," Proceedings of the Third ISDSS
Conference, Hong Kong, June 1995.

36. Bhargava, H. K., King, A. S., and McQuay, D. S., "DecisonNet: An Architecture for
Modeling and Decision Support over the World Wide Web," Proceedings of the Third
International Conference on Decision Support Systems, Vol. 2, 1995.

37. Bhargava, H. K., DecisonNet Web site, http://dnet.sm.nps.navy.mil/.

49

50

INITIAL DISTRIBUTION LIST

No. Copies
Defense Technical Information Center 2
8725 John J. Kingman Road., Ste 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

Professor Hemant K. Bhargava (Code SM/BH)
Department of Systems Management
Naval Postgraduate School
Monterey, California 93943-5000

Professor Gordon H. Bradley (Code OR/BZ)
Department of Operations Research
Naval Postgraduate School
Monterey, California 93943-5000

Professor Daniel Dolk (Code SM/DK)
Department of Systems Management
Naval Postgraduate School
Monterey, California 93943-5000

Professor Bala Ramesh (Code SM/RA)
Department of Systems Management
Naval Postgraduate School
Monterey, California 93943-5000

Devrim Rehber
Plevne Mah.
Pilot Sok. Arik Apt. No: 28/1
10050 Balikesir
TURKEY

51

8. Dz. K. K.
Personel Egitim Daire Baskanligi
06100 Bakanliklar / ANKARA
TURKEY

9. Deniz Harp Okulu Komutanligi
Ogretim Baskanligi
Tuzla/Istanbul
TURKEY

10. Bogazici University
80815 Bebek/Istanbul
TURKEY

11. ODTU
06531 Ankara
TURKEY

12. Bilkent University
Department of Computer Engineering
and Information Science
06533 Bilkent/Ankara
TURKEY

13. Professor Arthur M. Geoffrion
Decision Sciences
John E. Anderson Graduate School of Management
Box 951481, UCLA
Los Angeles, CA 90095-1481

14. Professor Tarun K. Sen
Department of Accounting
Pamplin Collage of Business
Virginia Polytechnic Institude and State University
Blacksburg, VA 24061 -0101

52

15. Professor Ramayya Krishnan
Decision Systems Research Institute
The Heinz School
Carnegie Mellon University
Pittsburgh, PA 15213

1

16. Professor Chris Jones
Department of Management Science
School of Business Administration
University of Washington
Seattle, WA 98195

1

17. Capt. Dan S. McQuay, USMC
1 Westwood Court
Stafford, VA 22135

1

18. Sanjay Saigal
Compass Modeling Solutions, Inc.
1005 Terminal Way, Suite 100
Reno, NV 89502

1

19. Professor Robert Fourer
Dept. of Industrial Engineering and Management Sciences
Northwestern University
2225 North Campus Drive
Evanston, IL 60208-3119

53

1

